Position Paper - Alternatives to traditional latency
measurement techniques
Version 01 June 2014

LACNIC Labs labs.lacnic.net
labs@lacnic.net

Abstract

Latency’s increasing importance encourages research on how to push down Round Trip Times
(RTTs) across the Internet, and develop new measurement techniques. In this scope, we
present a measuring alternative which involves determining TCP latency from a JavaScript
tool. This alternative has the benefit of generating massive amounts of data, from probes
located in many different places and thus reflecting the true state of a network, but the
disadvantage of potentially introducing noise to the measurements. The benefits and
problems tackled are addressed throughout this paper, as well as some potential fields of
application of this new measuring alternative.

Introduction

Latency is a critical network parameter that affects services across the Internet in
multiple ways. In order to have an understanding of a network’s quality capabilities, or
to determine the network’s reachability/interconnection, latency has to be monitored
constantly, from many points, to many other points. Usually, monitoring tools are located
in few nodes and generate measurements to many other nodes, in a sort of star diagram. In
order to drive more complete conclusions, there is room to develop a tool that runs in
many nodes, and generate measurements to many other nodes, thus getting a better picture
of the network’s latency, in a sort of mesh diagram or matrix.

Latency is a broad term, varying with OSI stack layer, protocol, 0S, hardware, network
architecture, routers, network congestion and many other parameters. This paper narrows
the term latency to TCP latency, measured from a web browser via JavaScript, to many web
servers on TCP port 80, across the Internet. Uncertainty has to be addressed and modeled
correctly, 1in order to minimize errors and statistical noise, and therefore generate

veridic results.

TCP latency and its increasing relevance

There is a general feeling that latency measurements have been shadowed by throughput
measurements, despite the close relationship that binds latency and throughput. Lets
imagine a simple and every-day HTTP transfer: before any HTTP-based process begins, a TCP
transaction has to be started. Both TCP and HTTP protocols require several packets to
travel over the net, adding up RTTs with each packet and making the final transfer time
increase. For our simple HTTP transaction, we are talking about 1,5 RTTs before the
server receives the corresponding resource request (GET). It is easy to see that if
latency 1s reduced, the global transaction time is reduced, and therefore network
throughput is increased. This well-known fact has put latency in a whole new light, and
new ways to reduce latency drastically are now subject of research.

http://www.google.com/url?q=http%3A%2F%2Flabs.lacnic.net%2F&sa=D&sntz=1&usg=AFQjCNHUJIL7xJja0CDFYkVL7AZ4c--17w
mailto:labs@lacnic.net

User Server

a recaived

Figure 1 - HTTP File transfer [1].

Latency delays have implications in many areas, including general web surfing. According
to a survey conducted by Internet Society in 2012 (ISOC’s Global Inernet Survey 2012),

the top reason holding general Internet users up from increasing their Internet usage was
connection speed. Assuming a large portion of Internet traffic is HTTP-based, latency
enhancements would impact in a considerable way among society.

This facts set an ecosystem to determine a latency baseline indicating its performance
throughout a network. Having such baseline, subsequent latency improvements would be
compared against historical data, and decision-making information could be drawn. This
baseline could indicate whether an infrastructure investment had a positive impact or
not, and in which amount. It could set metrics for content providers, in order to promote
fast and responsive local content over remote content prone to latency delays. Latency
within an Autonomous System could be monitored, or even further, the “distance” between
Autonomous Systems could be determined and any decisions regarding traffic exchange could
be made, based solely on latency metrics.

This simple scenario encourages us to find a way to measure latency easily and massively
across multiple points of the net. These points, or probes, would submit their
measurements to a central database where historical data would be stored and analyzed.

The instrument

Latency can be measured in a variety of ways, depending on the type of application, OSI
layer, protocol, among other configurations. The approach chosen this time is to imagine
the network as a black box, and generate large enough amounts of data in order to
consider the measurements representative of the network’s latency.

In order to measure TCP latency in an accurate way, the sampled population had to be as
large, representative, and random as possible. This could only be done with a measuring
instrument that follows some rules:

1. It must use technologies that result in large amounts of data generated.
2. In order to represent the world as it is, the instrument needed to be triggered
from many different locations as possible, within the region of study.

One low-cost and quick-deploy option is to use massive services already in the web and

https://www.google.com/url?q=https%3A%2F%2Fwww.internetsociety.org%2Finternet%2Fglobal-internet-user-survey-2012&sa=D&sntz=1&usg=AFQjCNE9zxV-nSXaDbITjlpWGMD1AJPHbg

like

triggering background latency measurements & la Google Analytics will clearly generate a

web standards, already-there web servers and JavaScript. A web page visitor

large and pseudo-random data set.’

The following snippet shows a simple way of measuring TCP latency from a web browser in
JavaScript.

latencyTest (ip) {

var ts, rtt, url;
var to = 1000;
if (ip.version == '4') url = "http://" +ip + "/" + Math.random() ;
if (ip.version == '6') url = "http://[" +ip + "]/" + Math.random() ;
$.Jsonp ({
type 'GET',
url url,
dataType 'jsonp’',
timeout to,
error function (xhr, textStatus, errorThrown) {
if (textStatus != 'timeout') {
rtt = (+new Date - ts);
post(rtt) ;
}
}
})
ts = +new Date;

The test runs
(ASs) . But
on the other hand the data set gets polluted as a consequence of many known and unknown

On the one hand, JavaScript enables measurements to be massive and diverse.

on the client side (web browser), and allows to be run from multiple locations

factors, such as making measurements at OSI layer 5, and the differences that may arise
ve),

This problems are not minor and will be worked around in the next sections.

between browser’s JavaScript engine implementation (JavaScriptCore, among many

others.

HTTP GET and TCP latency

What the

snippet is not measuring TCP RTT alone.

is snippet above measuring? Is it measuring actual TCP RTT? As it 1is, the

Is the HTTP connection establishment process shown in Figure 1 consistent across devices?

Surely not. Let’s examine it again:

It could be argued that the users accessing a certain web site do not vary much and end up biasing the data generated.

While this statement is true,

it could also be argued that by establishing a group of sites offering latency measurements,

different audiences are reached and thus the measured data ends up being representative.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWebKit%23JavaScriptCore&sa=D&sntz=1&usg=AFQjCNF8USn2nJnnVlK_aJanfgNlUb16Ow
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FV8_(JavaScript_engine)&sa=D&sntz=1&usg=AFQjCNE_B0I9m_dzbO3FlGWFLApLHunAFA

User

%)
=
=

} Server delay

| |
|z |
{[=])

%]
=

| =<
T B =

Client delay {

} Server delay

HTTP Error Code received!
(after 2 RTTs, client and server delays)

file recaived

Figure 2 - Error sources implicit in HTTP-based TCP latency measurements.

Let’s consider the following:

1. Both client and server introducing delays. Server delay: does it depend on server
load? Server 0S? Web server application?

2. The script relies heavily on hitting a 404 Return Status. Heavy 404 pages may rise
an issue, as the TCP payload gets bigger so do the latency measurements (stopwatch
stops at file received moment in Figure 2). Probably doing a GET to an unavailable
port instead of an unexistent makes the script 404-independent? Would that be
faster? It could be an option, or even another measurement tool...

3. Additional error: the client browser’s JavaScript engine implementation (covered
later) .

4. Actually 2 RTTs (after the TCP 3-way handshake) occurred before the HTTP Headers
arrived! One simple approach:

rtt = (+new Date - ts);
rtt rtt / 2;

Most of the tests will be performed against different destinations, and therefore the
measurements will occur during TCP connection establishment, but most of them will Dbe
performed more than once against the same destination, where a connection has already
been established. The latter tests won’t open a new TCP connection, but rather use the
already-open TCP connection in order to maintain a persistent HTTP connection. The time
required for the already-open connection phase happens to be half of the time required
for the TCP connection establishment phase. Let’s examine it:

data received

If d1—0 and d2—0, then
RIT =11 -10

Figure 3 - Persistent TCP connection anatomy.

At tl, and considering light 404 pages as well as not loaded servers, the HTTP Error Code
arrives after about 1 RTT. Considering the above example where the HTTP Error code
arrived after 2 RTTs, we should consider:

// 1lst GET // ...2nd GET onwards
rtt = (+new Date - ts); rtt = (+new Date - ts);
rtt = rtt / 2;

...0r simply discard the first measurement.

So, 1is the instrument measuring web server + client browser performance? Neither! The
outcome of these measurements are partly biased by device performance, partly biased by
the percentage of the population being sampled, and hopefully mostly dependent on true
TCP network latency. In order to fine-tune the instrument, some laboratory statistical
data has to be measured regarding the devices performance, most notably the client
browser’s JavaScript engine performance (as it varies widely between implementations).

Hands on..

Measurement results

T T T T T T T T
—— JavaScript Empirical PDF — JavaScript Empirical CDF
20 ——Lognomnal fitting H 08} ——Lognomnal fitting
—Normnal fitting —Normnal fitting
| 0 1
I5 | 07 -
£08 4
3
= K}
2 fos i
T B H
z
| 504t 4
03 o
sl J
02t -
ot -
' '
0 0.1 0.2 03 04 0s 0E [0g 0 0.1 0.2 03 04 0s 0E [0g
Data Data
Figure 6.1 - JavaScript ~6K sample normal and lognormal [Figure 6.2 - JavaScript ~6K sample normal and lognormal

Figure 6.1 and 6.2 show a ~6K sample data set, from a fixed origin to a fixed
destination, collected by the JavaScript tool. The first observation that can be made is
that the histogram in Figure 3.1 is not symmetrical: it is a right-tailed histogram,
which indicates that the distribution of this sample is not normal. Doing a fitting to
match a normal and lognormal distribution, we can visually infer that the lognormal
fitting suits Dbetter the data set. This curve 1s coherent with typical lognormal
processes, which are those affected by random and independent elements, such as the
network factors we suspect introduce uncertainty in this kinds of measurements.

This measurement results encourage us to keep on doing some research about TCP and
JavaScript latency relationship. They do not mean that the lognormal distribution is the
best distribution for this data set. There is still research to be done in searching for
the best fitting distribution for JavaScript measurements and analyzing p and o, and
looking for any relationship between these statistical parameters. We hope to find
relationships between distributions and OSes and web browsers, for example (not real
values) :

HTTP User-Agent Field Tester environment Measurement
normalization
Mozilla/5.0 (Macintosh; 0S: 0SX 10.9.2 p shift = -10 ms //
Intel Mac O0S X 10 9 2) Browser: Safari 7.0.3 shift measurements left
AppleWebKit/537.75.14 > > 10 ms
(KHTML, like Gecko) c = 1.3 // 30% more
Version/7.0.3 ‘spread’ curve

Safari/537.75.14

JavaScript and TCP

In order to find out a correlation between JavaScript RTT and TCP RTT, another set of
tests was run from the browser’s JavaScript engine, and simultaneously sniffed by a TCP
sniffer. This way, the same set of measurements were timed from two different scopes.

Some questions we had beforehand:

1. Measurements have shown us JavaScript present lognormal latency results. Will TCP
show the same distribution?

2. Will it show similar statistical parameters?

3. Most importantly, can we parametrize any differences between JavaScript and TCP?
4. Which parameters affect mostly these differences? 0S? Browser? How the server

manages HTTP requests? Network congestion? Time-of-day?

After running the tests and collecting data sets of ~500 samples, the results could be
summarized in Figure 4.1 and 4.2%:

T —— TCP vs JsvaScript RTTs
T T T T T T T T = s00 T T T T T T

JavaSeript
TCP

250

H iy I | | H i I I
50 00 750 200 Edl 300 0 400 450 500
Time (5]

Figure 4.1 - Histogram showing sampled RTTs from the
JavaScript tool (red, rightmost) and a TCP sniffer (gree Figure 4.2 - The same data from Figure 4.1 charted vs.
leftmost) . time. The red line corresponds to JavaScript, the greer
dashed one to TCP.

Figures 4.1 and 4.2 make us believe that JavaScript effectively adds some delay to the
browser’s TCP connections, as the JavaScript (red) probability histogram is consistently
shifted towards higher latency values. As to whether TCP results show a lognormal
tendency as JavaScript did, we can only observe that the TCP results are more symmetrical
than the JavaScript ones. This leads us to think that JavaScript processing not only
shifts the green PDF to the right, but also distorts it in such a manner that the red PDF

ends up fitting better a lognormal than a normal distribution.

Fitting a normal distribution’® to both data sets, the best fit for TCP was p=316.6 0=8.6,
and for JavaScript p=332 0=8.0. The difference between the distributions means was 16.11
ms. It is still to be explored which factors affect this difference, are they clinet-side
factor? In which way could these factors be predicted? 0S, browser? In future revisions

of this document we should explore a bit more about it.
Network congestion

One parameter that affects TCP latency measurements is network congestion. Theoretically,
latency measurements are closely tied to the network congestion at the moment of

observation, the more congestion, the greater the latency wvalues.

Having this fact in mind, we decided to inspect the latency measurements gathered and see
if there is a direct correlation between these two attributes. If this relationship is
found, we can predict the delay introduced in the measurements due to congestion and
mitigate errors 1n measurement. Any direct relationship should show greater latency

values at peak traffic hours. However, our latency measurements show that there is no

Tests were ran on Safari 7.0.3 browser on OS X 10.9.2, on a wired ethernet connection, and sniffed by the tcpdump utility.

Lognormal distributions are O-based, and important metrics such as p difference can’t be correctly estimated. For a
preliminary analysis, we chose to fit data to a normal distribution.

such relationship. The relationship between RTT and time-of-day can be seen in Figure
5.1, 5.2, and 5.3.

24 hour measurements comparison 24 hour measurements comparison
Comparacion de resultados en 24 horas. Brazil inner latency Mexico - Uruguay

700 700 700
600 600 600 . - * “

500 500 500 P A M
300 b ;
200 ’ 4 i‘in

i i

Figure 5.1 - Regional RTTs Figure 5.2 - Brazil inner RTTs Figure 5.3 - Mexico <--> Uruguay RTT:

300 300

200

As Figure 5.1, 5.2, and 5.3 show, there is no direct relationship between time-of-day and
latency measured, as measurements look 1like ‘white noise’. These three different
scenarios try to represent the LAC Internet in three different ways, having the whole
region considered (5.1), only a specific country (5.2), and a pair of countries (5.3).

Considering that LAC Internet traffic is cyclical in a 24-hour basis [2]%, we could
assume there is a direct relationship between time-of-day and network congestion. Having
this in mind and considering the 5.X charts, we tend to think there is no direct

relationship between LAC Internet congestion and out latency measurements.
Browser tests

As mentioned above, JavaScript execution is tied with the browser’s implementation of the
JavaScript engine. Because of this, different browsers result in different RTTs, so the
question is, 1is there a way to determine a “normalized” JavaScript latency? Lets say,
could we assume that, for example, Google Chrome browser results have a determined X
milliseconds shift of its PDF? Is there some relationship in the result’s variance?

Running some quick (~1000 samples) tests from three different browsers (on the same O0OS,
at the same time), we found that browsers show some difference in their curve’s p and o.

Test results are shown in Figure 7:

For IPv6, network traffic at IXPs is not as cyclical as for IPv4 [3], but considering most of the measurements are still
done over IPv4, we could discard the acyclical behaviours at the moment.

008 L —— Safari EPDF
— 3afari Lognomnal Fitting
——Chrorne EFDF
nos b ——Chrome Lognomnal Fitting [J
—Firefox EFDF
—Firefox Lognomnal Fitting

0.04 | B

0.03 H -

Density

o0z H -

—_

||

o
o
=

100 150 200 250
Diata,

Figure 7 - Differences between browser’s perceived latency.

Figure 7 shows clear differences between browsers behaviour for this data set. All
histograms show a lognormal distribution, so the parameter to be looking at is the median

values and how they differ from browser to browser.

At the moment no statistically relevant conclusions can be reached, but after doing some
more research and having enough amounts of data we hope we’ll be able to draw more
interesting conclusion about the browser’s JavaScript engine Dbehaviour and their
differences.

Conclusions

Field of application

Latency measurements have a strong relationship with network connectivity: the lower the
latency values, the better the connectivity. Usually longer paths require more time for
the same information to travel, sub-optimal routing makes this path differences manifest
into time differences. Network connectivity 1is an attribute that not only depends on
network topology, but also depends on agreements between network operators and other
agents (other Internet Service Providers, Internet Exchange Points, backbone providers).

Therefore, poorly connected ISPs will show greater latency values.

Given this scope, by making “mesh” latency measurements, that is from different origins
to different destinations, a connectivity matrix between AS, countries, or regions could
be built. Also, path difference could be detected as a consistent difference in latency
values. Let’s check the following example, with samples taken with the Javascript tester
between Chile and Uruguay (~1300 km apart):

Latency hetween Uruguay and Chile Latency between Brazil and Argentina

0.0043 T 0.0030 T
EE 2014 (48 samples) -~ EEE 2013 (219 samples)
0.0040| Better connectivity . SO
{~ 110ms) 0.0035) 7 \ Beftfer .
- ! v . connpectivity oor
0.0035 g] V(= 100ms) connectivity
’ \ | I {~400ms)
0.0030 ! \ 0.0020
I \
0.0025} 1\ I
- \ ! 0.0015
0.0020 -7 RSN A
X , AN N
/ AT Poor connectivity
o.0015f 7 [~ 450ws) 1 0.0010

0.0010
0.0005

0.0005

L] UUOUU - = 200 (] UUDUO

Figure 6.1 - Path difference in latency measurements Figure 6.2 - Path difference in latency measurements
between Chile and Uruguay in 2014 between Brazil and Argentina in 2013

The histograms in Figure 6.1 and 6.2 shows two clear peaks, one around 100 ms and another
around 400 ms. This kinds of results lead us to think about information flowing between
two countries via two very different paths: the slower taking 4x the time to travel than
the fastest one. The countries in this example should consider making their connectivity
better!

Conclusions

In this document we have covered some reasons for which JavaScript might help network
measurements and analysis. Javascript has always been considered a web front-end design
programming language, but tests have shown that when pushing its capabilities to the edge
it can help harvesting of information from very diverse sources. Pushing the language and
its context to the edge implies making strong assumption about many elements, from which
this paper focused on browser performance.

Despite being in an early stage, the JavaScript tester has demonstrated that by gathering
results in a “mesh” fashion it can help to get to know network latency values in a
realistic way, specially when the networks scanned are big and somewhat divided
(different network operators, bad routing policies).

Nevertheless, this new approach to measuring latency doesn’t substitute traditional
latency measurement techniques. The JavaScript tool provides information on how the
end-user perceives network latency, as an OSI layer 4 (TCP) attribute. Using the
JavaScript tool is a way to complement those traditional results, originating from other
ICMP , TCP, and UDP tools.

We strongly think that the kind of information gathered by this type of tool is very
valuable for encouraging more regional connectivity agreements, infrastructure
investments, and local content. A widespread use of tools of this kind will eventually
lead to gather information of good quality and develop a better regional Internet.

References

1. Touch, J., Heidemann, J., and Obraczka, K., Analysis of HTTP Performance,

10

http://www.google.com/url?q=http%3A%2F%2Fwww.isi.edu%2F~touch%2F&sa=D&sntz=1&usg=AFQjCNGRBs08jnDTSPxeSanJrGUjHU2PfQ
http://www.google.com/url?q=http%3A%2F%2Fwww.isi.edu%2F~johnh%2F&sa=D&sntz=1&usg=AFQjCNHNSTLzYKg3KnUCwHHyC2fHuDl3cg
http://www.google.com/url?q=http%3A%2F%2Fwww.isi.edu%2F~katia%2F&sa=D&sntz=1&usg=AFQjCNFAH4u-5wu-JumvtPWMYaP_ozCSHA

USC/Information Sciences Institute.

Pontos de Troca de Trafego do Brasil (PTTMetro) - Comité

Brasil (CGI.BR). IPv4 Weekly Graph (30 minute average)

http: sp.ptt.br/images/pix/agregado bps-weekly.png

PTTMetro - CGI.BR. IPv6 Weekly Graph (30 minute average)

http://sp.ptt.br/images/pix/agreqgado-ipv6 bps-weekly.png

11

Gestor da Internet no

http://www.google.com/url?q=http%3A%2F%2Fwww.isi.edu%2F&sa=D&sntz=1&usg=AFQjCNFFWI7FqWBWDCteUw7HnOR17oFdBg
http://www.google.com/url?q=http%3A%2F%2Fsp.ptt.br%2Fimages%2Fpix%2Fagregado_bps-weekly.png&sa=D&sntz=1&usg=AFQjCNFkhnIRbFPQLxbt_QT4gwerVmjgLg
http://www.google.com/url?q=http%3A%2F%2Fsp.ptt.br%2Fimages%2Fpix%2Fagregado-ipv6_bps-weekly.png&sa=D&sntz=1&usg=AFQjCNF2Ift5u5i9wtjPV73dvJPYKDirKQ

