
Measuring latency from the browser

Agustín Formoso
LACNIC Labs

agustin@lacnic.net

ABSTRACT
Latency’s increasing importance encourages research on how to
develop new measurement techniques. In this scope, we present a
measuring alternative which involves determining HTTP latency
from a JavaScript tool. This alternative has the benefit of
generating massive amounts of data, from probes located in many
different places and thus reflecting the true state of a network, but
the disadvantage of introducing noise to the measurements. The
aim of this paper is to cover the solution found to correct the noise
that was generated when the tester was ran in multiple platforms.

Key words
Measurements, latency, browser, JavaScript.

1. INTRODUCTION
Latency measurements have a strong relationship with network
connectivity: the lower the latency values, the better the
connectivity. Usually longer paths require more time for the same
information to travel; sub-optimal routing makes geographically
close points have large latency values between them. It is not rare
to see neighbor countries have (ICMP) latencies of ~200 ms, or
even in-country latency measurements to be above ~100 ms.

Given this scope, by making large scale “mesh” latency
measurements, from different origins to different destinations, a
connectivity matrix between AS, countries, or regions can be
built.

For this matrix to be representative, these latency measurements
have to be done in great amount, from many places to many other
places, and consistently over time. The way we propose to
perform such measurements is placing a background JavaScript in
several websites. This would enable visitors to trigger background
measurements, à la Google Analytics.

Being a web language, JavaScript is designed for other purposes
but network measurements. Taking the language to its limits
results unavoidably in the introduction of error, considering the
fact that the script will be running in several different
environments (OS and browser combinations). It is therefore of
great importance to measure and mitigate the error introduced in
the measurements. This paper tackles this problem and proposes a
way to clear the error by normalizing the different environments
in which the script was ran.

2. The tool
2.1 Implementation
Latency can be measured in a variety of ways, depending on the
type of application, OSI layer, protocol, among other
configurations. The approach chosen this time is to imagine the
network as a black box, and generate large enough amounts of
data in order to consider the measurements representative of the
network’s latency.

One low-cost and quick-deploy option is to use massive services
already in the web and web standards, like already-there web
servers and JavaScript. A web page visitor triggering background
latency measurements à la Google Analytics will clearly generate
a large and pseudo-random dataset.
The following snippet1 shows a simple way of measuring HTTP
latency from a web browser in JavaScript.
var ts, rtt, url;

ts = +new Date;

// HTTP GET to remote url

rtt = (+new Date - ts);

What is the snippet above measuring? Is it measuring actual
HTTP RTTs? As it is, the snippet is not measuring HTTP RTTs
alone. Among the factors affecting the tests are the browser’s
JavaScript engine performance, and the OS on which the browser
is running. As mentioned previously, this paper will explain the
tests by which these kinds of errors are mitigated.

3. The tests
As mentioned above, two factors affecting JavaScript latency
measurements are the browser in which the test is running and the
OS in which the browser is running. Not all browsers implement
TCP connections in the same way, not even between different
browser versions! Moreover, the browser JavaScript engine may
differ between different browser releases. The same happens for
OSes and how they handle network communications. These
uncertainties need to be measured in order to mitigate the error
introduced in the measurements.
In order to measure the uncertainty introduced by the browser +
OS combination, the tester had to be ran under controlled
conditions, varying the browser + OS combination. For testing
how this combination affects latency measurements, we should
make several measurements between a fixed origin and fixed
destination, at the same time (or in a very short time span), in
order to have as few variations as possible in other factors which
affect latency measurements. By this means we want the only
change in our experiment to be the browser and OS chosen for
that experiment.

3.1 Test objectives
The main objective of the tests was to build a unified criteria for
the different environments in which the tester was running. These
environments are determined by the HTTP User Agent field,
which identifies browser and OS of the running code. After
knowing browser and OS, the only thing to do is lookup such
browser + OS combination in a correction matrix and alter the
measurements in order to correct them from the error that is being

1 This is a simplistic version of the actual script used, but the

script implementation is beyond the scope of this paper.

introduced in that specific platform. The snippet below shows an
example of what we were looking for.
correct_measurement(measurement, http_user_agent):

 os, browser = parse_ua(http_user_agent)

 factor = matrix_lookup(os, browser)

 return correct(measurement, factor)

The example below shows how the User Agent field can be
parsed and the measurement corrected (example values).

HTTP User
Agent field

Mozilla/5.0 (Macintosh; Intel Mac OS X
10_9_2) AppleWebKit/537.75.14 (KHTML,
like Gecko) Version/7.0.3 Safari/537.75.14

Tester
environment

OS: OSX 10.9.2
Browser: Safari 7.0.3

Correction
factor

Shift the dataset 10 ms to the left

Table 1. Correction factors for a specific User Agent

3.2 Test products
The matrix mentioned above is nothing more than the aggregation
of all the test results. This matrix should give an idea of how to
correct the measurements based on a chosen environment. The
matrix below gives us an idea of how the matrix should look like
(example values):

Browser /
OS Windows 8 Windows 7 OSX 10.9

Chrome v.39 268 ms 270 ms 266 ms

Safari v.7 266 ms 269 ms 270 ms

Table 2. Correction matrix example
Alternatively, and choosing one environment as our base
configuration, we could build a delta matrix to show the
correction factor to be used in the correction process. For this
example we chose Chrome v.39 on Windows 8 as our reference
environment (example values):

Browser /
OS Windows 8 Windows 7 OSX 10.9

Chrome v.39 0 ms +2 ms -2 ms

Safari v.7 -2 ms +1 ms +2 ms

Table 3. Normalized correction matrix example
Having this table would be enough to shift the measurements in
the amount needed to correct environment differences. For the
example above (Safari 7.0.3 on OSX 10.9.2), we would have to
add 2 ms to the measured data.

4. Test results
After setting up our configurations in a virtualized cloud service,
which would run our tests in controlled conditions, we gathered
10K samples for each browser + OS combination and then
compared the results.

4.1 Comparing raw results
In order to visualize the tests done in each environment and draw
conclusions easier from the raw data, a series of charts were
generated. These charts show the whole dataset as histograms,
divided by configuration.

The following chart shows the histograms representing the data
corresponding to the Google Chrome family (latest 10 versions)
on Windows 8. For each Chrome version, one translucent
histogram was generated and overlapped with the rest. The final
product is a chart that includes 10 overlapped histograms, plus an
aggregated histogram (darkest red) that includes all the 10
environments together.

Figure 1. Uncorrected results for Chrome on Windows 8

One of the first conclusions we can draw from the chart is that the
different environments for Chrome are grouped in two: one group
is centered around ~270 ms and the other around ~280 ms. These
two “clusters” show that even when using the same browser
family, the tests results may vary in around ~10 ms. Going a bit
further, the 270 ms cluster is formed by Chrome versions 34, 35,
and 36, while the 280 cluster is formed by the rest; this makes us
think versions 34, 35, and 36 have something different from the
rest, probably the way they run the JavaScript code or the way
they handle TCP connections (we’re yet unable to tell what the
difference is, but we can see there is one and we can correct it).
Whatever the difference is, these tests give us an idea on how to
correct the latency measurements.

4.2 Correcting raw results
Visualizing the raw data is not enough to correct the results. What
we need to do is to identify the necessary transformation to be
done in order to normalize our dataset. To do this we need to do
three things

1. Identify a reference environment against which to
perform the transformations

2. Identify the transformation to be applied
3. Perform the actual transformations.

For this example, we chose Chrome v. 39 on Windows 8 as our
reference set, and then identified the subsequent transformations
to be applied for the rest of the dataset. As a first approach, a
simple transformation is to shift the different environments to
match the reference environment’s median. Our transformations
values are listed in the table below under the Δ column:
Version Std. dev. (ms) Median (ms) Δ (ms)

33 18 284 -4

34 21 271 +9

35 8 272 +8

36 30 271 +9

37 32 282 -2

38 19 280 0

39 7 280 0

40 10 282 -2

41 13 269 +11

42 10 280 0

Table 4. Results with the corresponding transformation value
for different Chrome versions

After applying the corresponding transformations we end up with
the following result dataset:

Figure 2. Corrected results for Chrome on Windows 8

The corrected result set has one great mean and not “two means”
as the uncorrected dataset, as the samples are now shifted, and has
a lower std. dev, as the datasets are now less spread over the x
axis. For this example the mean was shifted to 280 ms (Chrome v.
39) and the resulting std. dev. of the whole dataset changed from
20 to 19 ms. It might not seem a great change at first sight, but
thanks to the visualizations we know that the underlying dataset
now is better represented by the statistics and that different
browser versions are not too distant from one another.

4.3 Inter-browser results
Another behavior we were looking for is the one between browser
families (for a fixed OS): aggregating each family and then
comparing them with other families might give us better insight
on how each browser behaved on a specific platform. For this case
we chose the families of Chrome, Firefox, and Internet Explorer
families on Windows 8.

Figure 3. Results for Chrome, Firefox, and Internet Explorer

This new diagram showed no surprising results. The three families
show different characteristics, but are bounded in a 200 – 300 ms
range. Specifically, the datasets show the following properties:

Browser family Median Std. Dev.

Chrome 278 20

Firefox 275 13

Internet Explorer 281 9

Aggregation 279 14

Table 5. Results for the Chrome, Firefox, and Internet
Explorer families

The table shown previously gives us an idea of how the
measurements may vary with the browser given they’re running
on Windows 8 (for the three families considered, but it can be
scaled very easily to any existent browser family and any other
OS). One of the things that is relevant from the table is the values
corresponding the “Aggregation” row, which aggregates all the
samples from the three families considered. The whole
aggregation has 30K samples (10K each family), a median of 279
ms and a std. dev. of 14 ms, which means that most of the
measurements will be bound in a 279 ± 28 ms box. Those figures
indicate that for the measurements that had not been corrected yet,
and considering our 30K sample is big enough, the error margin is
at most of 10% (for a ~95% confidence interval), which is not
excessively high, considering that this is not a traditional way of
measuring latency and the amount of variables affecting the
measurements is high.

4.4 Correction matrix
From transformations and histograms like the ones shown above,
where we can visualize the statistical profile of the measurements,
we can build a matrix that relates all the results and let us
implement our test correction function we are looking for.

The matrix should have enough information in order to transform
an HTTP latency result into a corrected result. This matrix should
have information of OS, OS version, browser, and browser
version, as well as the correction factor explained at the beginning
of this paper.
After exhaustive testing, the matrix was built, accepting the
following parameters:

• Browsers: Chrome versions 33-42, Firefox versions 29-
38, Safari, and Opera.

• OSes: Windows 10, Windows 8.1, Windows 8,
Windows 7, Windows XP, OSX 10.10, OSX 10.9, OSX
10.8, OSX 10.7, and OSX 10.6.

Please note that not all browser and OS combinations are
compatible.

5. CONCLUSIONS
Latency tests measured from the browser, via JavaScript scripts,
are a good means of collecting large amounts of network data,
and it is representative of the end-user perspective. However, the
considerations covered in this paper have to be taken into account
in order to correct browser and OS implementation differences,
specially those related to JavaScript performance and TCP
connections. If applied correctly, such corrections enable a layer
of abstraction and someone using the measurements dataset does
not have to consider the platform in which the tests were ran over.

6. FURTHER WORK
Further work is to be done in order to consider different use cases,
specially those contemplating higher and lower HTTP ping times
(well below and well above ~270 ms). There is also room for
improvement in seeking a correction factor for standard deviation,
as this paper only covered the correction factor for the median
value of the measurements; one suggestion for correcting the
standard deviation is shrinking the x axis having centre its median.

Further work could also be done regarding mobile environments.

7. Brief section about latency results
This section contains some visualizations and primary conclusions
derived from the results gathered so far, with the aim of
introducing the reader in the context of the LAC region
connectivity and the project deliverables. The charts shown in this
section are the result of letting the script run at the LACNIC home
page for about 12 months.

One value we are interested in looking at is the latency inside any
country. From the top of our minds we think that this value should
be low, as paths should be short, but in practice we see that these
values are way above our expectations; most of the results are
above 100 ms. The following chart summarizes our first
impressions about in-country latencies.

Figure 4. In-country latencies for the LAC region measured

by the JavaScript tool

Another visualization that might give us better insight is a
country-level matrix depicting the country originating the
measurement in the y axis and the country of destination in the x
axis. The previous in-country bar chart corresponds with the
matrix’s main diagonal.

Figure 5. Latency matrix for the LAC region measured by the

JavaScript tool
One quick conclusion is that the matrix is not symmetrical, not
even close. This might give us a hint on asymmetric paths
between countries.

As a final example we will present a chart showing a histogram
representing the latencies between two neighbor countries:
Uruguay and Brazil. The following series of charts show the
results gathered in the last four months (ending mid July 2015).

Figure 6. Results between Uruguay and Brazil (last four

months)
One of the main characteristics of this chart is that measurements
are clearly grouped in three: at ~75, ~200, and ~350 ms (and a shy
group at ~280 ms that appears only at months #1 and #4). Lets
call them A, B, C (and D).
The existence of three (or four) groups is probably consequence of
the existence of more than one path between these two countries.
Another aspect to look at is the great amount of measurements
that fall inside the groups that are not group A. Network operators
from these two countries might want to watch what is going on
between their networks. People doing research about network

connectivity might want to look at the dataset available via the
project’s RESTful API [1]. More protocols, filters, and
visualizations are available at the project’s Reports section [2].

8. ACKNOWLEDGEMENTS
Special acknowledgments go to the LACNIC Software
Development Team which made this work possible. Thanks!

9. References
[1] The Simon Project API Documentation.

http://simon.lacnic.net/simon/api

[2] The Simon Project Reports.
http://simon.lacnic.net/simon/reports

