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ABSTRACT 
Latency’s increasing importance encourages research on how to 
develop new measurement techniques. In this scope, we present a 
measuring alternative which involves determining HTTP latency 
from a JavaScript tool. This alternative has the benefit of 
generating massive amounts of data, from probes located in many 
different places and thus reflecting the true state of a network, but 
the disadvantage of introducing noise to the measurements. The 
aim of this paper is to cover the solution found to correct the noise 
that was generated when the tester was ran in multiple platforms. 
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1. INTRODUCTION 
Latency measurements have a strong relationship with network 
connectivity: the lower the latency values, the better the 
connectivity. Usually longer paths require more time for the same 
information to travel; sub-optimal routing makes geographically 
close points have large latency values between them. It is not rare 
to see neighbor countries have (ICMP) latencies of ~200 ms, or 
even in-country latency measurements to be above ~100 ms. 

Given this scope, by making large scale “mesh” latency 
measurements, from different origins to different destinations, a 
connectivity matrix between AS, countries, or regions can be 
built. 

For this matrix to be representative, these latency measurements 
have to be done in great amount, from many places to many other 
places, and consistently over time. The way we propose to 
perform such measurements is placing a background JavaScript in 
several websites. This would enable visitors to trigger background 
measurements, à la Google Analytics. 

Being a web language, JavaScript is designed for other purposes 
but network measurements. Taking the language to its limits 
results unavoidably in the introduction of error, considering the 
fact that the script will be running in several different 
environments (OS and browser combinations). It is therefore of 
great importance to measure and mitigate the error introduced in 
the measurements. This paper tackles this problem and proposes a 
way to clear the error by normalizing the different environments 
in which the script was ran. 

2. The tool 
2.1 Implementation 
Latency can be measured in a variety of ways, depending on the 
type of application, OSI layer, protocol, among other 
configurations. The approach chosen this time is to imagine the 
network as a black box, and generate large enough amounts of 
data in order to consider the measurements representative of the 
network’s latency. 

One low-cost and quick-deploy option is to use massive services 
already in the web and web standards, like already-there web 
servers and JavaScript. A web page visitor triggering background 
latency measurements à la Google Analytics will clearly generate 
a large and pseudo-random dataset. 
The following snippet1 shows a simple way of measuring HTTP 
latency from a web browser in JavaScript. 
var ts, rtt, url; 

ts = +new Date; 

// HTTP GET to remote url 

rtt = (+new Date - ts); 

What is the snippet above measuring? Is it measuring actual 
HTTP RTTs? As it is, the snippet is not measuring HTTP RTTs 
alone. Among the factors affecting the tests are the browser’s 
JavaScript engine performance, and the OS on which the browser 
is running. As mentioned previously, this paper will explain the 
tests by which these kinds of errors are mitigated. 

3. The tests 
As mentioned above, two factors affecting JavaScript latency 
measurements are the browser in which the test is running and the 
OS in which the browser is running. Not all browsers implement 
TCP connections in the same way, not even between different 
browser versions! Moreover, the browser JavaScript engine may 
differ between different browser releases. The same happens for 
OSes and how they handle network communications. These 
uncertainties need to be measured in order to mitigate the error 
introduced in the measurements. 
In order to measure the uncertainty introduced by the browser + 
OS combination, the tester had to be ran under controlled 
conditions, varying the browser + OS combination. For testing 
how this combination affects latency measurements, we should 
make several measurements between a fixed origin and fixed 
destination, at the same time (or in a very short time span), in 
order to have as few variations as possible in other factors which 
affect latency measurements. By this means we want the only 
change in our experiment to be the browser and OS chosen for 
that experiment. 

3.1 Test objectives 
The main objective of the tests was to build a unified criteria for 
the different environments in which the tester was running. These 
environments are determined by the HTTP User Agent field, 
which identifies browser and OS of the running code. After 
knowing browser and OS, the only thing to do is lookup such 
browser + OS combination in a correction matrix and alter the 
measurements in order to correct them from the error that is being 

                                                                    
1 This is a simplistic version of the actual script used, but the 

script implementation is beyond the scope of this paper. 



introduced in that specific platform. The snippet below shows an 
example of what we were looking for. 
correct_measurement(measurement, http_user_agent): 

 os, browser = parse_ua(http_user_agent) 

 factor = matrix_lookup(os, browser) 

 return correct(measurement, factor) 

The example below shows how the User Agent field can be 
parsed and the measurement corrected (example values). 

HTTP User 
Agent field 

Mozilla/5.0 (Macintosh; Intel Mac OS X 
10_9_2) AppleWebKit/537.75.14 (KHTML, 
like Gecko) Version/7.0.3 Safari/537.75.14 

Tester 
environment 

OS: OSX 10.9.2 
Browser: Safari 7.0.3 

Correction 
factor 

Shift the dataset 10 ms to the left 

Table 1. Correction factors for a specific User Agent 

3.2 Test products 
The matrix mentioned above is nothing more than the aggregation 
of all the test results. This matrix should give an idea of how to 
correct the measurements based on a chosen environment. The 
matrix below gives us an idea of how the matrix should look like 
(example values): 

Browser / 
OS Windows 8 Windows 7 OSX 10.9 

Chrome v.39 268 ms 270 ms 266 ms 

Safari v.7 266 ms 269 ms 270 ms 

Table 2. Correction matrix example 
Alternatively, and choosing one environment as our base 
configuration, we could build a delta matrix to show the 
correction factor to be used in the correction process. For this 
example we chose Chrome v.39 on Windows 8 as our reference 
environment (example values): 

Browser / 
OS Windows 8 Windows 7 OSX 10.9 

Chrome v.39 0 ms +2 ms -2 ms 

Safari v.7 -2 ms +1 ms +2 ms 

Table 3. Normalized correction matrix example 
Having this table would be enough to shift the measurements in 
the amount needed to correct environment differences. For the 
example above (Safari 7.0.3 on OSX 10.9.2), we would have to 
add 2 ms to the measured data. 

4. Test results 
After setting up our configurations in a virtualized cloud service, 
which would run our tests in controlled conditions, we gathered 
10K samples for each browser + OS combination and then 
compared the results. 

4.1 Comparing raw results 
In order to visualize the tests done in each environment and draw 
conclusions easier from the raw data, a series of charts were 
generated. These charts show the whole dataset as histograms, 
divided by configuration. 

The following chart shows the histograms representing the data 
corresponding to the Google Chrome family (latest 10 versions) 
on Windows 8. For each Chrome version, one translucent 
histogram was generated and overlapped with the rest. The final 
product is a chart that includes 10 overlapped histograms, plus an 
aggregated histogram (darkest red) that includes all the 10 
environments together. 

 
Figure 1. Uncorrected results for Chrome on Windows 8 

One of the first conclusions we can draw from the chart is that the 
different environments for Chrome are grouped in two: one group 
is centered around ~270 ms and the other around ~280 ms. These 
two “clusters” show that even when using the same browser 
family, the tests results may vary in around ~10 ms. Going a bit 
further, the 270 ms cluster is formed by Chrome versions 34, 35, 
and 36, while the 280 cluster is formed by the rest; this makes us 
think versions 34, 35, and 36 have something different from the 
rest, probably the way they run the JavaScript code or the way 
they handle TCP connections (we’re yet unable to tell what the 
difference is, but we can see there is one and we can correct it). 
Whatever the difference is, these tests give us an idea on how to 
correct the latency measurements. 

4.2 Correcting raw results 
Visualizing the raw data is not enough to correct the results. What 
we need to do is to identify the necessary transformation to be 
done in order to normalize our dataset. To do this we need to do 
three things 

1. Identify a reference environment against which to 
perform the transformations 

2. Identify the transformation to be applied 
3. Perform the actual transformations. 

For this example, we chose Chrome v. 39 on Windows 8 as our 
reference set, and then identified the subsequent transformations 
to be applied for the rest of the dataset. As a first approach, a 
simple transformation is to shift the different environments to 
match the reference environment’s median. Our transformations 
values are listed in the table below under the Δ column: 
Version Std. dev. (ms) Median (ms) Δ (ms) 

33 18 284 -4 

34 21 271 +9 

35 8 272 +8 

36 30 271 +9 



37 32 282 -2 

38 19 280 0 

39 7 280 0 

40 10 282 -2 

41 13 269 +11 

42 10 280 0 

Table 4. Results with the corresponding transformation value 
for different Chrome versions 

After applying the corresponding transformations we end up with 
the following result dataset: 

 
Figure 2. Corrected results for Chrome on Windows 8 

The corrected result set has one great mean and not “two means” 
as the uncorrected dataset, as the samples are now shifted, and has 
a lower std. dev, as the datasets are now less spread over the x 
axis. For this example the mean was shifted to 280 ms (Chrome v. 
39) and the resulting std. dev. of the whole dataset changed from 
20 to 19 ms. It might not seem a great change at first sight, but 
thanks to the visualizations we know that the underlying dataset 
now is better represented by the statistics and that different 
browser versions are not too distant from one another. 

4.3 Inter-browser results 
Another behavior we were looking for is the one between browser 
families (for a fixed OS): aggregating each family and then 
comparing them with other families might give us better insight 
on how each browser behaved on a specific platform. For this case 
we chose the families of Chrome, Firefox, and Internet Explorer 
families on Windows 8. 

 
Figure 3. Results for Chrome, Firefox, and Internet Explorer 

This new diagram showed no surprising results. The three families 
show different characteristics, but are bounded in a 200 – 300 ms 
range. Specifically, the datasets show the following properties: 

Browser family Median Std. Dev. 

Chrome 278 20 

Firefox 275 13 

Internet Explorer 281 9 

Aggregation 279 14 

Table 5. Results for the Chrome, Firefox, and Internet 
Explorer families 

The table shown previously gives us an idea of how the 
measurements may vary with the browser given they’re running 
on Windows 8 (for the three families considered, but it can be 
scaled very easily to any existent browser family and any other 
OS). One of the things that is relevant from the table is the values 
corresponding the “Aggregation” row, which aggregates all the 
samples from the three families considered. The whole 
aggregation has 30K samples (10K each family), a median of 279 
ms and a std. dev. of 14 ms, which means that most of the 
measurements will be bound in a 279 ± 28 ms box. Those figures 
indicate that for the measurements that had not been corrected yet, 
and considering our 30K sample is big enough, the error margin is 
at most of 10% (for a ~95% confidence interval), which is not 
excessively high, considering that this is not a traditional way of 
measuring latency and the amount of variables affecting the 
measurements is high. 

4.4 Correction matrix 
From transformations and histograms like the ones shown above, 
where we can visualize the statistical profile of the measurements, 
we can build a matrix that relates all the results and let us 
implement our test correction function we are looking for. 

The matrix should have enough information in order to transform 
an HTTP latency result into a corrected result. This matrix should 
have information of OS, OS version, browser, and browser 
version, as well as the correction factor explained at the beginning 
of this paper. 
After exhaustive testing, the matrix was built, accepting the 
following parameters: 



• Browsers: Chrome versions 33-42, Firefox versions 29-
38, Safari, and Opera. 

• OSes: Windows 10, Windows 8.1, Windows 8, 
Windows 7, Windows XP, OSX 10.10, OSX 10.9, OSX 
10.8, OSX 10.7, and OSX 10.6. 

Please note that not all browser and OS combinations are 
compatible. 

5. CONCLUSIONS 
Latency tests measured from the browser, via JavaScript scripts, 
are a  good means of collecting large amounts of network data, 
and it is representative of the end-user perspective. However, the 
considerations covered in this paper have to be taken into account 
in order to correct browser and OS implementation differences, 
specially those related to JavaScript performance and TCP 
connections. If applied correctly, such corrections enable a layer 
of abstraction and someone using the measurements dataset does 
not have to consider the platform in which the tests were ran over. 

6. FURTHER WORK 
Further work is to be done in order to consider different use cases, 
specially those contemplating higher and lower HTTP ping times 
(well below and well above ~270 ms). There is also room for 
improvement in seeking a correction factor for standard deviation, 
as this paper only covered the correction factor for the median 
value of the measurements; one suggestion for correcting the 
standard deviation is shrinking the x axis having centre its median. 

Further work could also be done regarding mobile environments. 

7. Brief section about latency results 
This section contains some visualizations and primary conclusions 
derived from the results gathered so far, with the aim of 
introducing the reader in the context of the LAC region 
connectivity and the project deliverables. The charts shown in this 
section are the result of letting the script run at the LACNIC home 
page for about 12 months. 

One value we are interested in looking at is the latency inside any 
country. From the top of our minds we think that this value should 
be low, as paths should be short, but in practice we see that these 
values are way above our expectations; most of the results are 
above 100 ms. The following chart summarizes our first 
impressions about in-country latencies. 

 
Figure 4. In-country latencies for the LAC region measured 

by the JavaScript tool 

Another visualization that might give us better insight is a 
country-level matrix depicting the country originating the 
measurement in the y axis and the country of destination in the x 
axis. The previous in-country bar chart corresponds with the 
matrix’s main diagonal. 

 
Figure 5. Latency matrix for the LAC region measured by the 

JavaScript tool 
One quick conclusion is that the matrix is not symmetrical, not 
even close. This might give us a hint on asymmetric paths 
between countries. 

As a final example we will present a chart showing a histogram 
representing the latencies between two neighbor countries: 
Uruguay and Brazil. The following series of charts show the 
results gathered in the last four months (ending mid July 2015). 

 
Figure 6. Results between Uruguay and Brazil (last four 

months) 
One of the main characteristics of this chart is that measurements 
are clearly grouped in three: at ~75, ~200, and ~350 ms (and a shy 
group at ~280 ms that appears only at months #1 and #4). Lets 
call them A, B, C (and D).  
The existence of three (or four) groups is probably consequence of 
the existence of more than one path between these two countries. 
Another aspect to look at is the great amount of measurements 
that fall inside the groups that are not group A. Network operators 
from these two countries might want to watch what is going on 
between their networks. People doing research about network 



connectivity might want to look at the dataset available via the 
project’s RESTful API [1]. More protocols, filters, and 
visualizations are available at the project’s Reports section [2]. 
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